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This article presents a continuum-level constitutive model of a single crystal deforming by
dislocation climb, accounting for crystallography and dislocation/point-defect interactions.
The proposed constitutive description represents an improvement over a previous recent
model, which extended the rate-sensitivity approach for single crystal plasticity by
dislocation glide to consider the deformation geometry of dislocation climb under the
assumption of instantaneous restoration of equilibrium concentration of vacancies near
climbing dislocations. The key element of the new model is a chemical stress parameter,
which represents the additional driving force on climbing dislocations due the excess
vacancy concentration. The original and new versions of the crystallographic model of
climb are compared through a simple example of a strongly anisotropic single crystal that
illustrates the differences in response due to the consideration or not of the chemical
driving force for climb.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

At high homologous temperatures, and stresses above a certain threshold, materials deform in the thermal power-law
creep regime, exhibiting rate-dependent plastic deformation carried by stress-assisted and thermally-activated dislocation
motion [1]. This high-temperature plasticity regime can be further partitioned into a glide-controlled creep regime, under
which the shear component of the applied stress acting along the glide direction on the glide plane is the one that drives
dislocation movement. At higher temperatures, the interaction of dislocations with point defects permits the former to climb
as well as glide. In this climb-controlled creep regime, the effect of the diagonal stress components must also be accounted
for.

In a recent contribution [2], we considered the simultaneous activity of crystallographic climb and glide in a single crys-
tal, and used the resulting continuum constitutive description to model the behavior of polycrystalline aggregates deforming
in the climb-controlled creep regime. While single crystal plasticity models for glide-controlled deformation have been ex-
tensively used for more than 40 years, giving rise to an entire sub-field of research and applications within the broader
field of computational plasticity, crystallographic models for the climb-controlled regime have been, strikingly, much less
investigated and utilized. Besides our aforementioned contribution [2], previous works that made use of the geometry of
climb at single crystal level to construct a polycrystal model are the formulations of Rougier et al. [3,4], and Tomé and
Christodoulou [5] for the study of the irradiation-induced creep and growth of Zr-alloy polycrystals.

One strong assumption of our previous model [2] consisted in considering instantaneous restoration of equilibrium con-
centration of vacancies near climbing dislocations. This assumption allowed us to only consider the effect of the mechanical
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Fig. 1. Slip coordinate system and corresponding unit vectors (b̂, n̂, ξ̂). Unit vectors of the dislocation coordinate system (n̂, t̂, χ̂). Dislocation line and
dislocation velocity also shown.

component of the Peach–Koehler (PK) force acting on dislocations due to an external applied stress, disregarding the effect
of the chemical PK component, related with the excess vacancy concentration generated by emission or absorption of the
latter by climbing dislocations. In this contribution we present a new version of the crystallographic model for climb that
incorporates a chemical stress parameter, which represents the additional driving force related to the non-equilibrium con-
centration of point defects in the crystal. The original and new versions of the climb model are compared through a simple
example of a strongly anisotropic single crystal that illustrates the differences in response due to the consideration or not
of this chemical driving force for climb.

2. Climb deformation geometry

The geometry of dislocation motion under stress can be described most simply in terms of a single dislocation of ar-
bitrary orientation [6]. Let us consider the coordinate system (x1, x2, x3) shown in Fig. 1. The normal to the slip plane is
specified by the unit vector n̂ along direction x2. Dislocation motion produces a displacement b (Burgers vector) of the
upper half of crystal in the direction of the unit vector b̂ along x1. This slip coordinate system is completed by the unit
vector ξ̂ = b̂ × n̂ along direction x3. A general dislocation motion (i.e. by climb and glide) occurs in the direction of the
velocity vector v, which is normal to the dislocation line and has two components: the glide velocity, vg, which lies in the
slip plane, and the climb velocity, vc, which is parallel to n̂. Another reference frame, the dislocation coordinate system, can
be defined based on t̂, the tangent to the dislocation line, n̂, and χ̂ , a unit vector parallel to vg. Both the glide and climb ve-
locity components arise in response to the corresponding component of the PK force on the dislocation. The Peach–Koehler
force [7], a virtual force per unit length acting on a dislocation is defined as [8]:

f = (σ · b) × t̂ (1)

from which we can define a glide component fg = f · χ̂ , and a climb component fc = f · n̂ such that:

fg = [
(σ · b) × t̂

] · χ̂ = (σ · b) · (t̂ × χ̂) = |b|σ ′ : (b̂ ⊗ n̂) (2)

fc = [
(σ · b) × t̂

] · n̂ = (σ · b) · (t̂ × n̂) = −|b|σ : (b̂ ⊗ χ̂) (3)

Last equality in Eq. (2), involving only the deviatoric component of the stress σ ′ , follows from the normality between b̂
and n̂. The climb force, on the other hand, depends on the full Cauchy stress, σ . However, thermodynamic considerations
by Weertman (see [9] for details), led to a modification of Eq. (3), involving a distinction between a mechanical compo-
nent produced by an applied stresses, and a chemical component due to non-equilibrium concentration of point defects
(vacancies, in the case of thermal creep), such that [9]:

f = (
σ ′ · b

) × t̂ +
[
− kBT

α|b|3 log
(
xv/xo,P T

v

)]
b × t̂ (4)

where α|b|3 is the volume change due to the formation of a vacancy and the first and second terms on the right are the
mechanical and chemical components of the PK force, respectively. In the expression for the chemical force, xv is the actual
concentration of vacancies, xo,P T

v is the equilibrium concentration of vacancies at the crystal’s hydrostatic pressure P and
temperature T , and kB is Boltzmann’s constant. Therefore, while the expression of the glide component remains the same,
the climb component should be re-written as:

fc = −|b|σ ′ : (b̂ ⊗ χ̂) − |b|
[
− kBT

α|b|3 log
(
xv/xo,P T

v

)]
(b̂ ⊗ χ̂) (5)

If the vacancy concentration in the crystal is everywhere equal to the equilibrium concentration at pressure P and temper-
ature T , the chemical force becomes zero. This condition is possible if the sources and sinks for vacancies (dislocations and
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surfaces) are such that vacancies are instantaneously produced or annihilated by these sources and sinks to maintain the
required equilibrium concentration.

The dyadic product in Eq. (2) is the classic glide tensor, which can be decomposed into symmetric and antisymmetric
parts:

g = b̂ ⊗ n̂ = m + q = 1

2
(b̂ ⊗ n̂ + n̂ ⊗ b̂) + 1

2
(b̂ ⊗ n̂ − n̂ ⊗ b̂) (6)

where mij is the symmetric Schmid tensor and qij is the corresponding antisymmetric (plastic rotation) tensor (note that

since b̂⊥n̂, gij and mij are traceless). The product σ ′ : (b̂ ⊗ n̂) = m : σ ′ is the resolved shear stress (i.e. the σ ′
12 component

of the external stress tensor expressed in slip-system coordinates), which, according to the Schmid law, has to reach a
threshold value for slip activation. Eq. (2) thus provides a physical interpretation of the phenomenological Schmid law, i.e.
slip is activated when a critical value of the force acting on dislocations is reached to overcome the slip resistance and start
dislocation motion. The Schmid law has been modified to account for rate effects and multislip, giving raise to the widely
used rate-sensitivity constitutive equation for single crystal material points deforming plastically by glide [10], i.e.

ε̇
′g
i j =

Ns∑
s=1

ms
i jγ̇

s = γ̇o

Ns∑
s=1

ms
i j

( |ms : σ ′|
τ s

o,g

)ng

sgn
(
ms : σ ′) (7)

where ε̇′ g is the (traceless) plastic strain rate tensor induced by glide. In the expression above the sum runs over all Ns
active slip systems; ms and τ s

o,g are, respectively, the Schmid tensor and the threshold resolved shear stress associated with
glide in system (s); γ̇ s is the shear rate on slip system (s); γ̇o is a normalization factor and ng is the stress exponent (inverse
of the rate-sensitivity) associated with glide.

By analogy with the above constitutive description of a single crystal deforming plastically by glide, the dyadic product
appearing in Eq. (5) can be defined as a climb tensor [2,6], i.e.

c = b̂ ⊗ χ̂ = k + r = 1

2
(b̂ ⊗ χ̂ + χ̂ ⊗ b̂) + 1

2
(b̂ ⊗ χ̂ − χ̂ ⊗ b̂) (8)

where kij and ri j are, respectively, the symmetric and antisymmetric parts of the climb tensor. The climb tensor resolves
the stress into a climb component in the same way the glide tensor does for the glide component. However, there are some
important differences between the two tensors. While gij is formed from two unit vectors based on the crystallography of
the slip process independently of the dislocation line orientation, ci j depends on the orientation (character) of the dislo-

cation. This dependence can be expressed in terms of ψ , i.e. the angle between t̂ and b̂. This parameter accounts for the
relative edge-screw character of the average dislocation density. In addition, it is evident that the climb tensor is in general
non-traceless. Hence, the symmetric climb tensor can be further decomposed into a deviatoric and a hydrostatic component,
i.e.

k = kd + kh (9)

The deviatoric, hydrostatic and antisymmetric components of the climb tensor expressed in slip-system coordinates are [6]:

kd = 1

6

⎡
⎣

4 sinψ 0 3 cosψ

0 −2 sin ψ 0

3 cosψ 0 −2 sinψ

⎤
⎦ (10)

kh = 1

3

⎡
⎣

sinψ 0 0

0 sinψ 0

0 0 sinψ

⎤
⎦ (11)

r = 1

2

⎡
⎣

0 0 cosψ

0 0 0

− cosψ 0 0

⎤
⎦ (12)

Carrying on the analogy with the constitutive description of glide, we proposed [2] to treat climb as being activated when
the climb force acting on dislocations reaches a critical value. In the case of equilibrium concentration of vacancies, a scalar
climb rate on system (s) can be defined as:

β̇s = γ̇o

( |kd,s : σ ′|
τ s

o,c

)nc

sgn
(
kd,s : σ ′) (13)

where nc and τ s
o,c are, respectively, the stress exponent and a scalar threshold stress associated with climb. This definition

leads to the following total strain rate of a single crystal deforming by climb (cf. Eq. (7)):



Author's personal copy

292 R.A. Lebensohn et al. / C. R. Mecanique 340 (2012) 289–295

ε̇′ c
i j =

Ns∑
s=1

kd,s
i j β̇s = γ̇o

Ns∑
s=1

kd,s
i j

( |kd,s : σ ′|
τ s

o,c

)nc

sgn
(
kd,s : σ ′) (14)

Like their glide counterparts (ng and τ s
o,g), parameters nc and τ s

o,c depend on temperature, strain rate and microstructure.
Eq. (14) allows one, e.g., to obtain the 5 independent components of the deviatoric strain rate of the crystal for an applied
deviatoric stress, or to solve a 5 × 5 system of non-linear equations to obtain σ ′ for a strain rate imposed to the crystal.

3. Accounting for dislocation/point defect interaction

In order to account for the chemical component of the PK force acting on climbing dislocations, we propose to modify
Eq. (14) in the following way:

ε̇c
i j = γ̇o

Ns∑
s=1

ks
i j

( |kd,s : σ + τ ch|
τ s

o,c

)nc

sgn
(
kd,s : σ + τ ch)

(15a)

ε̇c
kk = 0 (15b)

where the chemical stress parameter τ ch is scalar quantity that represents the dragging or boosting effect of the positive
or negative excess concentration of vacancies, with respect to the equilibrium concentration at the crystal’s temperature
and pressure in the absence of external applied stresses. This new constitutive parameter τ ch is evidently related with
the second term on the right of Eq. (5) that gives the climb component of the PK force acting on dislocations in crystals
with non-equilibrium concentration of point defects. The introduction of this parameter, adding (or subtracting) from the
resolved climb stress is inspired in the constitutive treatment of kinematic hardening (e.g. see in [11] the generalization to
crystal plasticity of the classic isotropic kinematic hardening formulation [12]), in which the kinematic hardening parameter
represents the effect of back-stresses produced by dislocation structures generated during previously accumulated plastic
deformation by slip. However, while kinematic hardening parameters should be, in general, identified for each slip system,
the chemical stress parameter is unique for the entire crystal (or a single-crystal material point), and its value is not
imposed, but it follows from the resolution of the system of non-linear equations given by Eq. (15) and the applied boundary
conditions. Note that the introduction of τ ch as a new unknown requires adding the incompressibility condition (Eq. (15b))
explicitly, in order to solve a 6 × 6 system, instead of a 5 × 5 one (cf. Eq. (14)). Next section illustrates the use of Eq. (15)
in the case of a strongly anisotropic single crystal deforming only by climb.

4. Application

The original [2] and the present new version of the crystallographic model of climb are hereby compared through a
simple example of a strongly anisotropic single crystal that illustrates the differences in response due to the consideration
or not of the chemical driving force for climb. Fig. 2(a) shows the initial geometry of the problem, with the two available
edge dislocation systems S1 and S2, and an applied Cauchy stress, of the form:

σ app =
⎡
⎣

σ
app
11 0 0

0 0 0

0 0 0

⎤
⎦ (16)

resulting in deviatoric stress components σ
′ app
11 = 2/3σ

app
11 and σ

′ app
22 = σ

′ app
33 = −1/3σ

app
11 . Note that the mechanical driving

force acting on S1 dislocations (σ ′ app
11 ) is twice the one on S2 dislocations (σ ′ app

22 ) and that deformation along x3 cannot be
accommodated by climb of either dislocation types. In order to simplify the analysis, we adopt the following values for the
model parameters and applied stress: τ s

o,c = 1; nc = 1; γ̇o = 1 and σ
app
11 = 1. With these numerical values, the climb tensors

and the corresponding stress projections on them are:

ks1 =
⎡
⎣

1 0 0

0 0 0

0 0 0

⎤
⎦ ; kd,s1 =

⎡
⎣

2/3 0 0

0 −1/3 0

0 0 −1/3

⎤
⎦ (17a)

ks2 =
⎡
⎣

0 0 0

0 1 0

0 0 0

⎤
⎦ ; kd,s2 =

⎡
⎣

−1/3 0 0

0 2/3 0

0 0 −1/3

⎤
⎦ (17b)

kd,s1 : σ app = 2

3
; kd,s2 : σ app = −1

3
(17c)

Replacing these values in Eq. (15a) we obtain:
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Fig. 2. Strongly anisotropic single crystal deforming by dislocation climb. (a) Initial configuration, showing the applied stress, and the two available dislo-
cation systems. Mechanical driving force acting on S1 dislocations (σ ′app

11 ) is double than the one on S2 dislocations (σ ′app
22 ). Deformation along x3 cannot

be accommodated by climb of either dislocation types. (b) Schematic representation of dislocation climb, with indication of the mechanical and chemical
components of the PK force acting on the climbing dislocations. The concentration of vacancies in the crystal is above the equilibrium concentration. The
resulting ε̇c

11 and ε̇c
22 strain rate components are respectively equal in magnitude and of opposite sign, while ε̇c

33 is zero.

ε̇c =
⎡
⎣

2/3 + τ ch 0 0

0 −1/3 + τ ch 0

0 0 0

⎤
⎦ (18)

which, combined with the incompressibility condition (15b) gives:

ε̇c
11 = 1/2; ε̇c

22 = −1/2; ε̇c
33 = 0 and τ ch = −1/6 (19)

Fig. 2(b) shows a schematic representation of the climb process, with indication of the mechanical and chemical compo-
nents of the PK force acting on both types of dislocations. Note that, from Eq. (5), the mechanical PK components have
opposite sign with respect to the projections of the applied stress on the climb tensors (Eq. (17c)). Evidently, the fact that
the mechanical driving force on S1 dislocations (which need to emit vacancies to climb, extending the extra lattice plane
downwards and thus the crystal in x1 direction) is twice the one on S2 dislocations (which absorb vacancies, moving the
extra plane to the right and contracting the crystal in x2 direction) gives an overall concentration of vacancies in the crystal
above the equilibrium concentration (xv > xo,P T

v ). This determines a positive chemical PK component, which opposes (i.e.
drags) S1 dislocations, and adds to the mechanical component acting on S2 dislocations, respectively. The incompressibility
condition and the fact that there are no dislocations able to accommodate strain in the x3 direction results in strain rate
components ε̇c

11 and ε̇c
22 of equal magnitude and opposite sign, and ε̇c

33 = 0.
Note also that the absolute value of the chemical stress parameter τ ch, besides depending on the relative orientation

of the available dislocation systems with respect to the applied stress, also depends on the magnitude of this stress. In
the example, if the applied stress increases, the absolute value of τ ch will also increase, reflecting an increase of xv and a
stronger bias of towards vacancy emission with respect to absorption by climbing dislocations.

It is interesting to compare the above response, predicted by means of the new constitutive framework, with the one
that is obtained with the previous version of the climb model [2], i.e. using Eq. (14), for the same boundary conditions and
assuming the same numerical values for the model parameters. Plugging the numbers given by (17) in Eq. (14) gives:

ε̇c
11 = 5/9; ε̇c

22 = −4/9; ε̇c
33 = −1/9 (20)

Evidently, neglecting the effect of the non-equilibrium concentration of vacancies determines a faster extension (ε̇c
11 =

5/9 > 1/2) in the x1 direction, meaning that the climb of S1 dislocations, responsible for this extension, is facilitated by
neglecting the dragging effect of the excess vacancy concentration, and a slower contraction (ε̇c

22 = −4/9 > −1/2) in the
x2 direction, i.e. the climb of S2 dislocations is only driven by the external stress, without the chemical component boost.
Interestingly, despite that none of the dislocation types can accommodate strain along x3, in this case the resulting ε̇c

33
does not vanish. This negative strain rate component along x3 can be explained as follows. Since the original climb model
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was constructed under the assumption of instantaneous restoration of the equilibrium concentration of vacancies, the actual
overall excess of vacancies made evident by the previous analysis should go somewhere, i.e. to dislocations or surfaces. For
this configuration, the model results imply that part of these excess vacancies are absorbed at a surface with normal along
direction x3, determining a contraction of the crystal in that direction.

5. Summary and perspectives

We have presented and assessed a new version of a constitutive model for single crystals deforming by thermal
creep, with explicit account of the geometry of climb. The proposed constitutive framework is built upon our previ-
ous crystallographic climb model [2], including an improved description of an important underlying physical mechanism,
the dislocation/point-defect interaction. The newly introduced chemical stress parameter accounts for the effect of non-
equilibrium concentrations of vacancies, arising from the fact that, due to the intrinsic single crystal anisotropy, the climb
driving forces of mechanical origin rarely determine that the vacancies emitted at certain rates by dislocations climbing in
one direction (e.g. in the case of edge dislocations, extending the extra lattice plane) can be absorbed at the same rate by
dislocations climbing in the other direction (e.g. removing atoms from the extra plane).

While the model equations and examples were given here for the case of thermal creep, in which only vacancies (and not
interstitials, due of their very low concentration) are relevant to promote dislocation climb, the formulation can be extended
to irradiation creep. In this case, vacancies and interstitials are continuously created in pairs, leading to a supersaturation
of point defects in the irradiated crystal, which only allows for climbing of dislocations by absorption (not emission) of
either type of defect, depending on the sign of the driving force. Since vacancies and interstitials interact with dislocations
differently, the extension of the proposed constitutive description to irradiation creep should involve some kind of polarity,
i.e. the threshold stress for climb should be different, depending on the sign of the resolved stress for climb plus the
chemical stress. This difference will reflect the fact that the type of point defects to be absorbed depends on the direction
of climb. In such case, Eq. (15) may be modified as follows:∣∣∣∣∣∣∣∣

ε̇c
i j = γ̇o

Ns∑
s=1

ks
i j

( |kd,s : σ ′ + τ ch|
τ s

o,c(sgn(kd,s : σ ′ + τ ch))

)nc

sgn
(
kd,s : σ ′ + τ ch)

ε̇c
kk = 0

(21)

and two (i.e. τ s+
o,c and τ s−

o,c ) instead of one threshold stresses should be identified, one for climb by absorption of vacancies
and another of interstitials.

In the case presented here, we restricted the analysis to pure climb. However, in the more general case in which creep
is controlled by climb but most of the dislocation motion is by glide, both glide (Eq. (7)) and climb (Eq. (14)) contributions
should be considered and, most importantly, the complicated coupling between climb and glide (e.g. when a gliding dislo-
cation stops at an obstacle, a small amount of climb may allow it to overcome the obstacle and continue gliding, providing
a significant amount of strain until it reaches the next obstacle, and so on) should be accounted for. This will require the
addition of sophisticated hardening laws, involving the mutual influence of the glide and climb strains on the evolution of
the glide and climb threshold stresses.

The determination of the threshold stress for climb can be either done by inverse analysis of experimental data, or
using lower length-scale models to obtain the stress needed to move dislocations by climb in the presence of certain
concentration of point defects. This can be done semi-analytically by means of rate-theory (e.g. [13]), or by numerical
schemes like dislocation dynamics (e.g. [14]), or molecular dynamics/kinetic Monte Carlo techniques (e.g. [15]).

Finally, it should be mentioned that the proposed single crystal model can be readily implemented as part of a polycrystal
formulation, as done in [2] utilizing self-consistent homogenization, or within the context of full-field models, e.g. based on
crystal-plasticity finite elements or spectral methods. Efforts in this direction are presently under way [15].
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